

CORRECTION DU DEVOIR DE SYNTHESE N°2

EPREUVE:

SCIENCES PHYSIQUES

Člasse : 1^{er} S4

<u>Durée</u>: 1 heure

Correction proposée par Mme Jeridi Larif HAYET

CHIMIE_(8pts)

Correction (08/03/2014)

Exercice n°1 (4,5 pts)

À 10°C, la solubilité de chlorure de potassium KCl est s₁= 265 g.L⁻¹.

À 60° C elle devient égale à $s_2 = 290 \text{ g.L}^{-1}$.

On donne: Les masses molaires atomiques: $M_{(C\ell)} = 35,5 \text{ g.mol}^{-1}$; $M_{(K)} = 39 \text{ g.mol}^{-1}$.

1°) À 10°C, on introduit une masse m de KCℓ dans un bécher contenant de l'eau pure.

Après agitation, on obtient mélange (M) de volume V_1 = 50 mL contenant un dépôt solide de masse m' = 1 g

a- Déterminer la masse maximale m₁ du soluté qu'on peut dissoudre dans 50 mL d'eau pure à 10°C.

 $S_1=m_1/V_1$ alors $m_1=S_1*V_1=265*0,05=13,25g$

b- En déduire la valeur de la masse m de KCℓ initialement introduite.

 $m=m_1+m'=13,25+1=14,25g$

- 2°) Le mélange (M) est maintenant chauffé jusqu'à la température 60°C.
 - a- Montrer que le mélange (M) est maintenant homogène.

Soit m["] = S_2*V1 = 290*0,05=14,5g est la masse maximale de KC ℓ qu'on peut dissoudre dans 50mL de solution à 60°C ,alors que la solution contenait 14,25 g<14,5g :solution non saturée à 60°C donc (M) est homogène .

b- Déterminer sa concentration molaire.

 $C = m/v_1 = 14.25 / 0.05 = 285 g.L^{-1}$; alors $C' = C/M_{(KCI)} = 285/(39 + 35,5) = 3,82 mol.L^{-1}$

c- Qu'elle masse maximale m_2 de soluté peut-on dissoudre dans le mélange (M) à 60°C ? m_2 = m'' -m=14,5-14,25= 0,25g : masse maximale qu'on peut dissoudre dans le mélange (M) à

60°C.

Exercice n°2 (3,5 pts)

Exposé à la lumière vive, le méthane réagit lentement avec le dichlore pour donner le chlorométhane et le chlorure d'hydrogène.

lote engah8

1

0,5

1

1

1

[u

1°) Définir une réaction chimique. C'est une transformation chimique au cours de laquelle des corps disparaissent(les réactifs) et de nouveaux corps apparaissent(les produits).

2°) Préciser les réactifs et les produits de cette réaction.

> Réactifs : methane + dichlore

> Produits : Chlorométhane +chlorure d'hydrogène

3°) Écrire le schéma de cette réaction.

Méthane +dichlore→ Chlorométhane +chlorure d'hydrogène

4°) Donner en **justifiant** la réponse deux caractère de cette réaction.

C'est une réaction amorcée (présence de la lumière) et lente (l'état final est attend après une certaine durée) .

5°) Afin d'atteindre l'état final plus rapidement, on se propose d'introduire une substance dans le mélange. Qu'appelle-t-on cette substance ? Quel est son rôle ?

C'est <u>un catalyseur</u>, son rôle est de rendre la réaction plus rapide, sans entrer dans la constitution des réactifs ni dans celle des produits.

Exercice $n^{\circ}1$ (5,5 pts)

À 8 heure, une voiture part d'une ville A. Elle arrive à 11 heure à une ville B.

Le mouvement de la voiture est supposé uniforme.

On donne : **AB = 270 km**.

1°) Définir la vitesse moyenne : La vitesse moyenne v_m d'un mobile est définie comme étant le rapport de la distance parcourue $\Delta \ell$ par le mobile par la durée Δt du parcourt.

2°) Déterminer la vitesse moyenne V_1 de la voiture au cours de son parcours en $km.h^{-1}$ puis en $m.s^{-1}$

 $V_m = \Delta t / \Delta t = 270/3 = 90 \text{km.h}^{-1} = 90/3,6 = 25 \text{m.s}^{-1}$

 $\mathbf{3}^{\circ}\mathbf{)}$ Une ville \mathbf{C} se trouve sur le trajet tel que :

AC = 180 km. Déterminer la durée du parcourt AC.

 $v_m = AC/\Delta t_1$ alors $\Delta t_1 = AC/v_{m=1}80/90 = 2h$.

4°) En choisissant:

> comme **origine des espaces** le point **C**.

comme origine des temps l'instant ou la voiture passe par le point A . $\frac{\vec{l}}{A}$ $\frac{\vec{l}}{C}$ \Rightarrow \Rightarrow

Compléter le tableau suivant : (page 3/4) :

Position	Α	С	В	
Abscisse x (en km) dans le repère (\mathbf{C} , \vec{i}).				lote enzah8
\vec{i} étant un vecteur unitaire.	$x_A = -180$	$x_C = 0$	$x_B = 90$	9

0,5

0,5

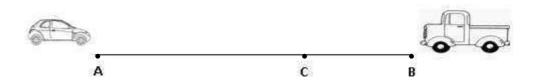
0,5

0.5

1

0,5

0.5


1,5

1,25

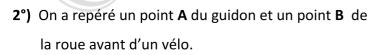
1

Instant de date $t(n)$ $t_A = 0$ $= 2$ $t_B = 3$	Instant de date t(h)	t _A = 0	=2	t _B =3
--	-----------------------------	---------------------------	----	-------------------

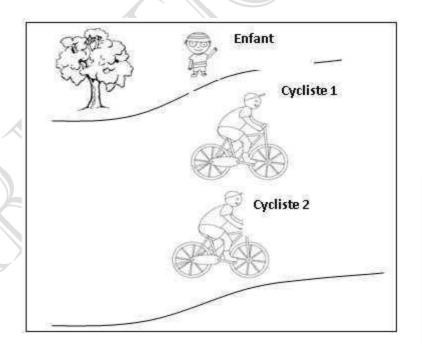
5°) Un camion quitte la ville B au même instant ou la voiture quitte la ville A.

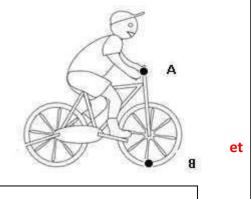
Le camion se dirige vers la ville A avec une vitesse **constante V_2**. Déterminer la valeur de la vitesse V_2 pour que la voiture et le camion se croisent en C.

La voiture arrive en C après 2h, puisque les deux véhicules démarrent au même instant et se croisent en C, alors le camion arrive en C après 2h d'où v_2 =CB/ Δt_1 = 90/2=45km.h⁻¹


Exercice n°2 (6,5 pts)

- 1°) Observer le schéma ci-contre :


 Les deux vélos roulent avec une


 même vitesse. Compléter par « au

 repos » ou « en mouvement ».
- Le cycliste (1) est au repos par rapport au cycliste (2).
- Le cycliste (1) est au repos par rapport à son vélo.
- L'enfant est en mouvement par rapport au cycliste (1).
- L'arbre est au repos par rapport à l'enfant.

- a) Définir la trajectoire d'un mobile : c'est l'ensemble des positions occupées par un mobile dans un repère donné au cours du temps
- **b)** Tracer l'allure de la trajectoire :
 - du point A par rapport à une personne immobile sur le trottoir.

0,5

0,5

1,25

1

Lycée pilote El Menzah 8

Page 3 sur 4

Devoir de synthèse N°2

droite

1er

du point B par rapport à une personne immobile sur le trottoir. Cycloïde

> du point **B** par rapport au cycliste.

Cercle de rayon R (celui de la roue)

Conclure: la trajectoire dépend du repère d'observation.

uvement du

c) On donne ci-dessous un cliché correspondant a une chronophotographie du mouvement du point A à l'échelle (1 cm → 20 cm). L'intervalle de temps entre deux points marqués est θ = 25 ms.

Quelle est la nature du mouvement du vélo ? Justifier :

Mouvement rectiligne <u>uniforme</u> car la trajectoire est une droite et la distance parcourue pendant la même durée est constante.

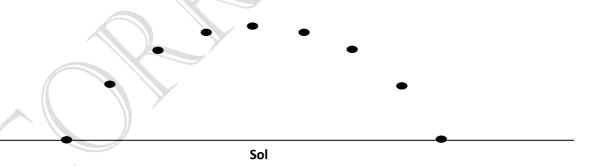
0,75

0,25

0,5

▶ Déterminer sa vitesse moyenne V_A le long du parcours A₀A₃(à l'aide d'une règle on mesure A₀A₃)

 $V_A = A_0 A_8 / 8\theta = 10 \times 20 \times 10^{-2} / 8 \times 25 \times 10^{-3} = 2 / 0.2 = 10 \text{ m.s}^{-1}$.


Déduire sa vitesse à chaque instant. (Sans faire de calculs)

0,5

Le mouvement est rectiligne uniforme, la vitesse moyenne est égale à la vitesse instantanée $:v_A=10\text{m.s}^{-1}$.

0,5

d) On donne ci-dessous un cliché correspondant à une chronophotographie du mouvement point B. L'intervalle de temps entre deux points marqués est $\theta = 25$ ms.

Déterminer la durée d'un tour complet du point B.

Δt=8*25.10⁻³ =200ms=0,2s

0,75

 \triangleright Le rayon de la roue avant étant **R = 32 cm**. Déterminer la vitesse moyenne **V**_B du point **B** au bout d'un tour complet.

 $V_B = 2 * \pi R / 8 * 25 * 10^{-3} = 2 * 3,14 * 0,32 / 0,2 = 2,01 / 0,2 = 10.05 \text{ m.s}^{-1}.$

Comparer V_A et V_B.

0,5

V_A= V_B les deux point ont parcouru la même distance pendant la même durée du parcourt, ils ont alors la même vitesse moyenne.

0.25